

The Little Red Schoolhouse

Large Chilled Water System

Design Seminar

Courtesy of Oslin Nation Company

Centrifugal Pump Fundamentals

The Pump Performance (Impeller) Curve

a **xylem** brand

Shrouds

Copyright 2023, Bell & Gossett, a Xylem brand

Bell & Gossett a xylem brand

Transforming Velocity to Pressure – Pump Head Impeller and Volute

Centrifugal Pump Components:

- Impeller
- Volute
- Driver (Motor)

The proper rotation of impeller is such that vanes are <u>"Slapping"</u> the fluid.

• Any combination of flow and head <u>must</u> intersect on the Pump Impeller Performance Curve

a **xylem** brand

8

Impeller Diameter and Performance Curve

Bell & Gossett a xylem brand

 ASHRAE 90.1 defines the Preferred Operating Region (POR) for a pump as 85%-105% of the flowrate at BEP on the performance curve of installed impeller.

Performance curve Copyright 2023, Bell & Gossett, a Xylem brand

- ASHRAE 90.1 defines the Preferred Operating Region (POR) for a pump as 85%-105% of the flowrate at BEP on the performance curve of installed impeller.
- ASHRAE 90.1 defines the Acceptable Operating Region (AOR) for a pump as 66%-115% of the flowrate at BEP on the performance curve of installed impeller.

Bell & Gossett

a xylem brand

Performance curve Copyright 2023, Bell & Gossett, a Xylem brand

- ASHRAE 90.1 defines the Preferred Operating Region (POR) for a pump as 85%-105% of the flowrate at BEP on the performance curve of installed impeller.
- ASHRAE 90.1 defines the Acceptable Operating Region (AOR) for a pump as 66%-115% of the flowrate at BEP on the performance curve of installed impeller.
- Hydraulic Institute defines the Preferred Operating Region (POR) for a pump as 70%-120% of the flowrate at BEP on the performance curve of installed impeller.
- **Pump Manufacturers** can allow flowrates up to maximum of **85%** of pump curve capacity. This tends to align with the Hydraulic Institute definition of POR.

The Flat Portion of the Pump Curve: What's the Flow?

Avoid Continuous Operation in this area

 Many possible flowrates at the same differential pump head

Flat Curve

Steep Curve

Capacity In US Gallons Per Minute

Flat Curve

Rise in Head from BEP to No Flow less than 20%

Steep Curve

Rise in Head from BEP to No Flow greater than 20%

Capacity In US Gallons Per Minute

Pump delivering 30 Ft head @ design flow

Density = 62.36 lbs/ft³

62.36 ÷ 144 = 0.43 psi/ft

144÷ 62.36 = 2.3 ft / psi

30 ft X .43psi/ft =12.9psi

12.9 psi X 2.3 ft/psi = 30 ft

 \overline{O}

Density (ρ): How heavy a fluid is for the amount measured **(lbs./ft³)**

Specific Gravity (SG): Ratio of a fluid density compared to density of water, at a specific temperature and pressure

SG = $\frac{\rho \text{ of Fluid}}{\rho \text{ of Water}}$

Pump Head (ft-16/16)

Pump Head (ft) = PSI x
$$\frac{2.31}{SG}$$

Hydronic System Flow Determination

Carrying?

*Mass Flowrate

Btu/Hr = 500 x GPM x Δ T

Btu/Hr = 500 x GPM x ΔT $Btu/Hr = 500 \times GPM \times (20^{\circ}F)$ $Btu/Hr = 10,000 \times GPM$ $\frac{Btu/Hr}{10,000} = GPM$

 $\frac{Btu/Hr}{12,500} = GPM$ (25°F)

 $\frac{Btu/Hr}{15,000} = GPM$ (30°F)

Water $C_p = 1.0 Btu/lb$ °F (@ 45 °F) Water $C_p = 1.0 Btu/lb$ °F (@ 68 °F) *Std. per HI 3.6.3.30 Water $C_p = 0.98 Btu/lb$ °F (@ 160 °F) In comparison:

40% P.G. $C_p = 0.85 Btu/lb \ \mathcal{F}$ (a) **45°F**) **40% P.G.** $C_p = 0.91 Btu/lb \ \mathcal{F}$ (a) **160°F**)

40% E.G. $C_p = 0.82 Btu/lb \ \mathcal{F}$ (a) 45 °F) 40% E.G. $C_p = 0.87 Btu/lb \ \mathcal{F}$ (a) 160 °F) A new small commercial office building heating load calculation determines **650,000 Btu/hr** is required to maintain occupant comfort. A hydronic system has been chosen using a supply <u>water</u> temperature of **160°F** and an expected temperature drop of **20°F** across the terminal units. A single circulating pump will be used. Determine the required system flow rate.

Answer: $\frac{650,000}{10,000} = 65 \text{ GPM}$

A new small commercial office building heating load calculation determines **650,000 Btu/hr** is required to maintain occupant comfort. A hydronic system has been chosen using a supply <u>water</u> temperature of **160°F** and an expected temperature drop of **20°F** across the terminal units. A single circulating pump will be used. Determine the required system flow rate.

Answer: $\frac{650,000}{10,000} = 65 \text{ GPM}$

What if we used 40% Ethylene Glycol instead of water?

Water $\rho = 62.42 \ lb/ft^3$ (a) 45 °F) Water $\rho = 62.31 \ lb/ft^3$ (a) 68 °F) *Std. per HI 3.6.3.30 Water $\rho = 61.00 \ lb/ft^3$ (a) 160 °F) **REMINDER!!** $SG = \frac{\rho \text{ of Fluid}}{\rho \text{ of Water}}$ 40% E.G. $\rho = 66.51 \ lb/ft^3$ (a) 45°F) 40% E.G. $\rho = 65.28 \ lb/ft^3$ (a) 160°F)

A new small commercial office building heating load calculation determines **650,000 Btu/hr** is required to maintain occupant comfort. A hydronic system has been chosen using a supply <u>water</u> temperature of **160°F** and an expected temperature drop of **20°F** across the terminal units. A single circulating pump will be used. Determine the required system flow rate.

Answer: $\frac{650,000}{10,000} = 65 \text{ GPM}$

What if we used 40% Ethylene Glycol instead of water?

Density of Water @ $160^{\circ}F = 61.00 \text{ Lbs/ft}^{3}$ Density of 40% EG @ $160^{\circ}F = 65.28 \text{ Lbs/ft}^{3}$ $SG = \frac{\rho \text{ of Fluid}}{\rho \text{ of Water}} = \frac{65.28}{61.00} = 1.07$ Cp of 40% EG @ $160^{\circ}F = 0.87 \text{ Btu/lb}^{\circ}F$

A new small commercial office building heating load calculation determines **650,000 Btu/hr** is required to maintain occupant comfort. A hydronic system has been chosen using a supply <u>water</u> temperature of **160°F** and an expected temperature drop of **20°F** across the terminal units. A single circulating pump will be used. Determine the required system flow rate.

Answer: $\frac{650,000}{10,000} = 65 \text{ GPM}$

What if we used 40% Ethylene Glycol instead of water?

Answer:
$$\frac{650,000}{(10,000)(0.87)(1.07)} = 70 \text{ GPM}$$
9309

Density of Water @ $160^{\circ}F = 61.00 \text{ Lbs/ft}^{3}$ Density of 40% EG @ $160^{\circ}F = 65.28 \text{ Lbs/ft}^{3}$ $SG = \frac{\rho \text{ of Fluid}}{\rho \text{ of Water}} = \frac{65.28}{61.00} = 1.07$ Cp of 40% EG @ $160^{\circ}F = 0.87 \text{ Btu/lb}^{\circ}F$

Best Efficiency Point

Pump Impeller Type	RULE	% of BEP Flow
Double- Suction	All Split-Case Pumps	35%
Single- Suction	Flow@ BEP > 2500 GPM	25%
Single- Suction	Flow@ BEP > 800 GPM	23%
Single- Suction	Flow@ BEP > 100 GPM	20%
Single- Suction	Flow@ BEP > 10 GPM	15%
Single- Suction	Flow@ BEP > 1 GPM	10%

Pump Head – Bernoulli's Theorem

Pressure: A force applied against a unit of Area (Ib/in²)

Fluid Head: Total mechanical energy contained in a pound of fluid (ft-lb)

Pump Head: Energy *(work)* added by a Pump as fluid passes through it **(ft-lb/lb)**

In a Hydronic System, with liquid flowing, three (3) factors influence how mechanical energy *(head)* in the fluid is *transformed*:

- The Force of static pressure
- The Head due to an <u>elevation</u> change above a reference point (*Potential Energy*)
- The Head due to the **velocity** of the liquid (*Kinetic Energy*)

Total Head of a fluid at point **"a"** is equal to the total head of the fluid at point **"b"** provided:

- There is **no head lost** due to friction or work
- There is **no head gained** due to the application of work

Bernoulli's Theorem as applied for Pumped Hydronic Systems Closed Loop

$$\frac{P_a}{W} + Z_a + \frac{V_a^2}{2g} + E_p = \frac{P_b}{W} + Z_b + \frac{V_b^2}{2g} + h_f$$
Pump Head $E_p = \left(\frac{P_b}{W}, \frac{P_a}{W}\right) + \left(Z_b, Z_a\right) + \left(\frac{V_b^2}{2g}, \frac{V_a}{2g}\right) + h_f$

For "Closed Loop" Systems Only

$$E_p = h_f$$

Copyright 2023, Bell & Gossett, a Xylem brand

Tota

Determining Fluid Head losses due to friction

- Absolute Pressure (P_{abs}): Measured with reference to Perfect Vacuum Atmospheric Pressure (P_{atm}): Average air pressure at given elevation Gauge Pressure (P_g): Measured <u>above</u> Atmospheric Pressure
- Vacuum Pressure (Pvac): Measured below Atmospheric Pressure

- Absolute Pressure (P_{abs}): Measured with reference to Perfect Vacuum Atmospheric Pressure (P_{atm}): Average air pressure at given elevation Gauge Pressure (P_g): Measured <u>above</u> Atmospheric Pressure
- Vacuum Pressure (Pvac): Measured below Atmospheric Pressure

"Head" or "Friction" Loss

Pressure Drop is evidence energy (Pump Head) is consumed (used up) to move a fluid

- $Q_1 = Known$ (design) Flow
- $Q_2 = Final Flow$
- h₁ = Known (design) Head
- $h_2 = Final Head$

 $h_{2} = \left[\frac{Q_{2}}{Q_{1}}\right]^{-} x h_{1}$ $20 \text{ PSI} = \left[\frac{6}{3}\right]^{2} x 5$

<u>Rate</u> of Head loss: Measured per 100ft of <u>equivalent</u> straight pipe length (Industry Standard)

Example: In a 2" Copper pipe, a flow rate of 30 GPM will experience a pressure drop (friction loss) rate of 2ft per 100ft of equivalent straight pipe it travels through.

NOTE: When selecting pipe size, a friction loss rate greater than 4.0 - 4.5 ft per 100ft should be avoided

Operating Hours/Year	<2000 Hours per Year				<2000 and <4000 Hours per Year				>4400 Hours per Year			
Nominal Pipe Size, in.	Other (GPM)	Friction Loss Rate (Ft/100 Ft)	Variable Speed (GPM)	Friction Loss Rate (Ft/100 Ft)	Other (GPM)	Friction Loss Rate (Ft/100 Ft)	Variable Speed (GPM)	Friction Loss Rate (Ft/100 Ft)	Other (GPM)	Friction Loss Rate (Ft/100 Ft)	Variable Speed (GPM)	Friction Loss Rate (Ft/100 Ft)
2-1/2	120	10.01	180	21.78	85	5.2	130	11.66	68	3.42	110	8.48
3	180	7.26	270	15.78	140	4.5	210	9.74	110	2.86	170	6.51
4	350	6.55	530	14.56	260	3.72	400	8.46	210	2.48	320	5.52
5	410	2.84	620	6.25	310	1.67	470	3.68	250	1.12	370	2.34
6	740	3.47	1100	7.44	570	2.11	860	4.63	440	1.30	680	2.96
8	1200	2.20	1800	4.79	900	1.27	1400	2.95	700	0.79	1100	1.86
10	1800	1.52	2700	3.30	1300	0.82	2000	1.86	1000	0.50	1600	1.21
12	2500	1.18	3800	2.63	1900	0.70	2900	1.57	1500	0.45	2300	1.01
Max. Velocity for pipes 14"-24"	8.5 ft/sec		13 ft/sec		6.5 ft/sec		9.5 ft/sec		5.0 ft/sec		7.5 ft/sec	

* Created from 2021 ASHRAE Handbook – "Fundamentals", Chapter 22, Pg. 22, Table 21

Equivalent Length: Length of pipe, of same size as the fitting, that would result in the same pressure drop as the fitting.

Nominal	90° El Flow	or Tee: Thru	Tee: Side B In or	ranch Flow r Out	90° Miter	45° Miter		Valves	
Size	€ ≞				ß	\sim	Gate	Globe	Plug
	Screw	Cu or Weld	Screw	Cu or Weld	Weld	Weld	All	All	All
1⁄2"	1	1/2	2	1	21/2	1/2	1/2	15	1
3⁄4 "	2	1	4	2	4	3⁄4	1/2	20	11⁄2
1"	3	11⁄2	6	3	5	1	3⁄4	25	2
1¼"	31⁄2	1¾	7	31⁄2	6	11⁄4	1	30	21/2
11⁄2"	4	2	8	4	71/2	11⁄2	11⁄4	40	3
2"	5	21/2	10	5	10	2	11/2	50	4
21⁄2"	6	3	12	6	12½	21/2	2	80	5
3"	8	4	16	9	15	3	21/2	90	6
4"		51⁄2		12	20	4	3	110	8
5"		8		15	25	5	31/2	140	10
6"		9		18	30	6	4	170	12
8"		11		24	40	8	5	240	16
12"		18		36	60	12	8	320	24

Bell & Gossett

a xylem brand

TABLE 2 FITTING EQUIVALENT LENGTH TABLE

Known Pressure Drops (KPD's)

Series Loop (Typically Heating Only)

- Measure or calculate the Longest Circuit **TEL** (*Pipe & Fittings*)
- Multiply TEL by Friction Loss Rate (Ft. per 100') + KPD's = Req'd Pump Head (ft)

Total System Head Loss for Closed Loop Pump Sizing Parallel Loops

Total System Head Loss = B+C for <u>*Critical Circuit*</u> Copyright 2023, Bell & Gossett, a Xylem brand

a xylem brand

The Law of Conservation of Energy – Part 1

Flowrate - Gallons per Minute (GPM)

• Intersection of **Pump** and **System** curve is the point where Pump Head and

System Friction Losses are equal. "All the pump head must be consumed"

40

$\left(\frac{Q_2}{Q_1}\right)$

Q₁ = Known (design) Flow

 $h_2 = (Q_2/Q_1)^2 \times h_1$

 $\left(\frac{h_2}{h_1}\right)$

Bell & Gossett

a xylem brand

- $Q_1 = \text{Final Flow}$
- $Q_2 = 1$ main low b = Known (design) He
- h₁ = Known (design) Head h₂ = Final Head

Must account for Constant (Static) Head Loss

a xylem brand

Must account for Constant (Static) Head Loss

Must account for Constant (Static) Head Loss

Net Positive Suction Head (NPSH)

Avoiding

Fluid Vapor Pressure Details:

- Type of Fluid?
- Operating Temperature?
- Operating Pressure?

a xylem brand

Net Positive Head Required (NPSHR)

Copyright 2023, Bell & Gossett, a Xylem brand

a xylem brand

$$NPSHA = \frac{2.31(P_a - P_v)}{spgr} + (H_e - H_f)$$

Where:

- P_a pressure in the receiver, (psia)
- P_v vapor pressure of the liquid at its maximum temperature (psia)
- H_e elevation head (feet)
- H_f friction losses in the suction piping at the required flow rate (feet)

NOTE:

(psia): Gauge pressure reading + Atmospheric pressure (*Elevation reference to Sea Level?*)

 $Hf = (4.0 + 3.6 + 1.7) \times 6.5/100' = 0.60$ feet

100 GPM: 21/2" Iron Pipe FLR: 6.45'/100' (Water @ 210°F) 2¹/₂" Measured Straight Pipe: 4.0' 2¹/₂" Iron Reg. 90° Elbow: 3.6' TEL 2¹/₂" Screwed Gate Valve: 1.7' TEL

Copyright 2023, Bell & Gossett, a Xylem brand

NPSHA =
$$2.31(Pa - Pv)$$
 + (He - Hf)
sp gr
= $2.31(14.7 - 14.1)$ + (2 - 0.60)
0.96
= **2.84 feet**

Bell & Gossett a xylem brand

 $Hf = (4.0 + 3.6 + 1.7) \times 6.7/100' = 0.62$ feet

100 GPM: 2¹/₂" Iron Pipe
FLR: 6.7'/100' (Water @ 45°F)
2¹/₂" Measured Straight Pipe: 4.0'
2¹/₂" Iron Reg. 90° Elbow: 3.6' TEL
2¹/₂" Screwed Gate Valve: 1.7' TEL

Copyright 2023, Bell & Gossett, a Xylem brand

NPSHA = 2.31(Pa - Pv) + (He - Hf) sp gr =2.31(14.7 - 0.147) + (2 - 0.62) 0.99 = 35.34 feet

Bell & Gossett

a xylem brand

 $Hf = (4.0 + 3.6 + 1.7) \times 6.7/100' = 0.62$ feet

100 GPM: 2½" Iron Pipe
FLR: 6.7′/100′ (Water @ 45°F)
2½" Measured Straight Pipe: 4.0′
2½" Iron Reg. 90° Elbow: 3.6′ TEL
2½" Screwed Gate Valve: 1.7′ TEL

Copyright 2023, Bell & Gossett, a Xylem brand

NPSHA =
$$2.31(Pa - Pv)$$
 + (He - Hf)
sp gr
= $2.31(14.7 - 0.147)$ + (-2 - 0.62)
0.99
= **31.34 feet**

Bell & Gossett a xylem brand

Close Coupled In-Line Centrifugal Pump

Series: e-80 Model: 4x4x9.5B

Features & Design Best in Class Hydraulic Performance Low Operating and Maintenance Cost Horizontal or Vertical Installation

The Series e-80 is a highly efficient, heavy duty, close coupled pump designed for horizontal or vertical in-line mounting. The e-80 is available in stainless steel fitted construction, with flows up to 2500 GPM, heads to 380 feet.

http://bellgossett.com/pumps-circulators/in-line-pumps/series-e-80/

Pump Selection Su	Immary
Duty Point Flow	700 US gpm
Duty Point Head	50 ft
Control Head	0 ft
Duty Point Pump Efficiency	66.7 %
Part Load Efficiency Value (PLEV)	0.0 %
Impeller Diameter	9.375 in
Motor Power	15 hp
Duty Point Power	13.6 bhp
Motor Speed	1800 rpm
RPM @ Duty Point	1770 rpm
NPSHr	19.8 ft
Minimum Shutoff Head	91.9 Tt
Minimum Flow at RPM	93.4 US gpm
Flow @ BEP	467 US gpm
Fluid Temperature	68 °F
Fluid Type	Water
Weight (approx consult rep for exact)	525 lbs
Pump Floor Space Calculation	4.44 ft ²

Close Coupled In-Line Centrifugal Pump Series: e-80 Model: 5x5x9.5B Features & Design

Best in Class Hydraulic Performance Low Operating and Maintenance Cost Horizontal or Vertical Installation

The Series e-80 is a highly efficient, heavy duty, close coupled pump designed for horizontal or vertical in-line mounting. The e-80 is available in stainless steel fitted construction, with flows up to 2500 GPM, heads to 380 feet.

http://bellgossett.com/pumps-circulators/in-line-pumps/series-e-80/

Pump Selection Sun	nmary
Duty Point Flow	700 US gpm
Duty Point Head	50 ft
Control Head	0 ft
Duty Point Pump Efficiency	76.4 %
Part Load Efficiency Value (PLEV)	0.0 %
Impeller Diameter	8.5 in
Motor Power	15 hp
Duty Point Power	11.8 bhp
Motor Speed	1800 rpm
RPM @ Duty Point	1770 rpm
NPSHr	8.47 ft
Minimum Shutoff Head	72.210
Minimum Flow at RPM	116 US gpm
Flow @ BEP	578 US gpm
Fluid Temperature	68 °F
Fluid Type	Water
Weight (approx consult rep for exact)	405 lbs
Pump Floor Space Calculation	5.3 ft ²

- NPSH Required
 - impeller design, shape, materials
 - plotted on pump curve
 - increases with flow

- NPSH Available
 - Positives
 - » Static suction head
 - » Lower vapor pressure
 - » Higher system pressure
 - Negatives
 - » Friction losses
 - » Suction lift

To avoid cavitation: NPSHA > NPSHR

* Suggest minimum 5% more NPSHA than NPSHR

Pump Head – Bernoulli's Theorem for Open Loop Systems

Open Loop

Open Loop System - "Total Static Head"

a xylem brand

Calculating required Pump Head: **Open Loop** System Scenario #1

- Pressure differences don't exist.
- Pump head is determined by elevation, velocity

Bell & Gossett

a **xylem** brand

differences and friction in pipes, fittings.

Calculating required Pump Head: **Open Loop** System Scenario #2

Tanks "a" and "b" are at the same level, however at different pressures

- Elevation differences don't exist.
- Pump head is determined by pressure, velocity
 - differences and friction in pipes, fittings.

Calculating required Pump Head: **Open Loop** System Scenario #3

- Velocity differences don't exist.
- Pump head is determined by pressure, elevation

Bell & Gossett

a **xylem** brand

differences and friction in pipes, fittings.

Select an e-1510 base mounted pump, operated at 1800 RPM constant speed, for the condenser/cooling tower loop that supplies a 100 Ton water-cooled chiller. The tower will be an Induced Draft Counterflow type, supplying 85°F cold water, have a range of 10°F, and require a hot water inlet pressure of 4 PSI. At design flow, the chiller will have a 22' pressure drop.

Step 1: Required Pump Flow

30/ Δ T °F = 30/10 = 3 GPM/Ton x 100 Ton = 300 GPM

Step 1: Required Pump Flow

30/∆T °F = 30/10 = 3 GPM/Ton x 100 Ton = 300 GPM

Step 2: Required Pipe Size & Friction Loss Rate (Scale #2 on System Syzer, Iron Pipe)

4" Pipe, Friction Loss Rate 4.75'/100' TEL

Step 1: Required Pump Flow

30/ Δ T °F = 30/10 = 3 GPM/Ton x 100 Ton = 300 GPM

Step 2: Required Pipe Size & Friction Loss Rate (Scale #2 on System Syzer, Iron Pipe)

4" Pipe, Friction Loss Rate 4.75'/100' TEL

Step 3: Select Triple Duty Valve, VerifyPressure Drop

300 GPM, 3DS-4S, 3.0' (70% Open)

Copyright 2023, Bell & Gossett, a Xylem brand

a **xylem** brand

NOTE: Jobsite at Sea Level

Step 5: Determine Piping Friction Losses

35' + 80' = 115/100 = 1.15 x 4.75 = 5.5'

Step 5: Determine Piping Friction Losses

35' + 80' = 115/100 = 1.15 x 4.75 = 5.5' (Scale #4)

Step 5: Determine Piping Friction Losses

35' + 80' = 115/100 = 1.15 x 4.75 = 5.5' (Scale #4)

Step 6: Add Known Pressure Drops (KPD's)

Condenser: 22'

Tower Inlet: 5 PSI x 2.31 = 11.5'

Triple Duty Valve: 3'

Static Head: 12'

Step 7: Total Pump Head

5.5' + 22' + 11.5' + 3' + 12' = **54'**

Step 8: Select Pump for 300 GPM @ 54'

www.esp-systemwize.com

Pump Selection

Selection Options Selection Mode ()			Controller Options ()			Frequency			Unit of Measurement		
Product Family 🜖											Z Express Select
	End-Suction (select all)			In-Line (select all)			Double Suction (select all			Multi-Stage (select all)	
	🗸 e-1510	0		e-60, e-60ECM, e-60Stock	0		e-HSC	0		e-SV O	
	√ e-1510Stock	0		e-80	0		VSX-VSC	0			
	e-1531	0		e-80Stock	0		VSX-VSCS	0			
	e-1532	0		e-80SC	0		VSX-VSH (obsole	te) 0			
	e-1535Stock (obsole	ete) 🕚		e-82	0		HSCS (obsolete)	0			
	e-1535 (obsolete)	0		e-82SC	0		HSC-S (obsolete)	0			
				e-90, e-90E, e-90ECM, e-90St	ock 0		HSC3 (obsolete)	0			
				ecocirc ECM Circulator Pump	ps O						
				Circulator Pumps	0						
Duty Point											
🖬 Total System Flow 🚯						🖬 Total Head 🕕					
300				US gpm	-	54				ft	-
# of Pumps (not including stan	ndby) 🚯					Additional pumps for standby					
1					✓ Parallel -	0					~

Motor Sizing (1)				Motor Stand	ard			
Non-Overloading Motors			~	NEMA				~
Motor Enclosure				Motor Speed	ls (optional) 👔			
ODP			~	1800				
Fluid Preset Cust	mc							
Fluid			Density				Specific Gravity	
		~	995.9396		kg/m3	-	0.9977	
Water			Viscosity				Vapor Pressure	
Water								
Water Temperature 85	۰F	-	0.807		cP	-	4.1117	КРА

Pump Selection Summary				
Duty Point Flow	300 US gpm			
Duty Point Head	54 ft			
Control Head	0 ft			
Duty Point Pump Efficiency	75.9 %			
Part Load Efficiency Value (PLEV)	0.0 %			
Impeller Diameter	7.75 in			
Motor Power	7.5 hp			
Duty Point Power	5.55 bhp			
Motor Speed	1800 rpm			
RPM @ Duty Point	1770 rpm			
NPSHr	6.55 ft			
Minimum Shutoff Head	60.6 ft			
Minimum Flow at RPM	84.3 US gpm			
Flow @ BEP	421 US gpm			
Fluid Temperature	85 °F			
Fluid Type	Water			
Weight (approx consult rep for exact)	377 lbs			
Pump Floor Space Calculation	4.75 ft ²			

Performance curve meets 14.6 / ISO 9906 acceptance criteria	Available Phase: 1, 3, Available Voltage(s) [V]: 230, 230/460, 575, 200
---	---

Pump Selection Su	Immary		
Duty Point Flow	300 US gpm		
Duty Point Head	54 ft		
Control Head	0 ft		
Duty Point Pump Efficiency	72 %		
Part Load Efficiency Value (PLEV)	0.0 %		
Impeller Diameter	8.375 in		
Motor Power	7.5 hp		
Duty Point Power	5.73 bhp		
Motor Speed	1800 rpm		
RPM @ Duty Point	1750 rpm		
NPSHr	8.52 ft		
Minimum Shutoff Head	72 ft		
Minimum Flow at RPM	49.4 US gpm		
Flow @ BEP	247 US gpm		
Fluid Temperature	85 °F		
Fluid Type	Water		
Weight (approx consult rep for exact)	367 lbs		
Pump Floor Space Calculation	4.35 ft ²		

Performance curve meets 14.6 / ISO 9906 acceptance criteria | Available Phase: 1, 3, Available Voltage(s) [V]: 230, 230/460, 575, 200

Why does smaller pump have higher duty point bhp?

Pump Selection St	immary
Duty Point Flow	300 US gpm
Duty Point Head	54 ft
Control Head	0 ft
Duty Point Pump Efficiency	72 %
Part Load Efficiency Value (PLEV)	0.0 %
Impeller Diameter	8.375 in
Motor Power	7.5 hp
Duty Point Power	5.73 bhp
Motor Speed	1800 rpm
RPM @ Duty Point	1750 rpm
NPSHr	8.52 ft
Minimum Shutoff Head	72 ft
Minimum Flow at RPM	49.4 US gpm
Flow @ BEP	247 US gpm
Fluid Temperature	85 °F
Fluid Type	Water
Weight (approx consult rep for exact)	367 lbs
Pump Floor Space Calculation	4.35 ft ²

Bell & Gossett

a **xylem** brand

Performance curve meets 14.6 / ISO 9906 acceptance criteria | Available Phase: 1, 3, Available Voltage(s) [V]: 230, 230/460, 575, 200

Pump Selection SummaryDuty Point Flow300 US gpmDuty Point Head54 ftControl Head0 ft

	Duty Point Head	54 ft		
	Control Head	0 ft		
	Duty Point Pump Efficiency	72 %		
1	Part Load Efficiency Value (PLEV)	0.0 %		
	Impeller Diameter	8.375 in		
	Motor Power	7.5 hp		
	Duty Point Power	5.73 bhp		
1	Motor Speed	1800 rpm		
	RPM @ Duty Point	1750 rpm		
	NPSHr	8.52 ft		
1	Minimum Shutoff Head	72 ft		
	Minimum Flow at RPM	49.4 US gpm		
	Flow @ BEP	247 US gpm		
	Fluid Temperature	85 °F		
	Fluid Type	Water		
	Weight (approx consult rep for exact)	367 lbs		
	Pump Floor Space Calculation	4.35 ft ²		

Why does smaller pump have higher duty point bhp?

Copyright 2023, Bell & Gower, hypenchoes smaller pump have higher required NPSH?

$$NPSHA = \frac{2.31(P_a - P_v)}{spgr} + (H_e - H_f)$$
Pa = 14.7 Psia
Pv = 0.597 Psia (@ 85°F Water)
sp.gr. = 0.9977 ≈ 1.0
FLR: 4.75'/100' (Water @ 85°F)
$$SP_{v} = 0.597 Psia (Water Water) + (H_e - H_f)$$

 $H_e = 5'$

Copyright 2023, Bell & Gossett, a Xylem brand

 $H_f = 50'/100 \times 4.75 = 2.4'$

$$NPSHA = \frac{2.31(P_a - P_v)}{spgr} + (H_e - H_f)$$

$$P_a = 14.7 \text{ Psia}$$

$$P_v = 0.597 \text{ Psia} (@ 85^{\circ}F \text{ Water})$$

$$sp.gr. = 0.9977 \approx 1.0$$
FLR: 4.75'/100' (Water @ 85^{\circ}F)
$$H_e = 5'$$

$$H_f = 50'/100 \times 4.75 = 2.4'$$

$$NPSHA = \frac{2.31(P_a - P_v)}{sp} + (He - Hf)$$

$$f = \frac{2.31(14.7 - 0.597)}{1.0} + (5 - 2.4)$$

$$= 35.18 \text{ feet}$$

$$Specified a Conservation Priority of the constraint of the cons$$

Understanding Horsepower

Head Capacity Head Capacity H.P. Lost To Friction & Recirc. WHP

Capacity In US Gallons Per Minute

 $\eta_{\text{Pump}} = \frac{\text{WHP}}{\text{BHP}}$

Capacity In US Gallons Per Minute

Bell & Gossett a xylem brand

Rotating Speed (RPM):

- 1000 (50 Hz)/1150 (60Hz): High Flow/Low Head (low NPSH)
- **1500** (50 Hz)/**1800** (60Hz): Most common for all applications
- **3000** (50 Hz)/**3600** (60Hz): Low Flow/High Head

Enclosure Type:

- ODP: Open Drip-Proof (When mounted horizontally!)
- TEFC: Totally Enclosed Fan Cooled
- TEAO: Totally Enclosed Air-Over
- XPRF: Explosion Proof

a xylem brand

- Customers must **take or ship** defective motor to
 <u>Manufacturer Approved Repair Shop</u>
- Use of any Non-Approved Repair Shop must be authorized by the motor manufacturer prior to work being started
- Problems as a result of incorrect installation, foreign debris, or physical damage to any motor components are <u>not</u> covered

Protect Motors from Dust!!

Introduction to the Pump Affinity Laws

Typical Coil Piping Detail 2-Way Modulating Valve

4

2

l n

Typical Coil Piping Detail 2-Way Modulating Valve

4

2

l n

Pump Head (ft) O

- Closed Valve (Deadhead)
- No Flow, Maximum Pump Head
- Motor Lightly Loaded (Low Amp Draw)

- "X" System Pressure Drop
- "X" Flow
- **Increased Motor Load**

- "Y" System Pressure Drop
- "Y" Flow
- Increased Motor Load

Impeller Trimming: Why and When?

Bell & Gossett a xylem brand

Impeller Trimming: Why and When?

Impeller Trimming: Why and When?

Trim Impeller

4

2

Open Triple Duty

- $Q_2 = Q_1 (D_2/D_1)$
- Head
 - $h_2 = h_1 (D_2/D_1)^2$
- Power
 - $bhp_2 = bhp_1 (D_2/D_1)^3$

Q = Flow D = Diameter h = head bhp = Horsepower

Subscript 2 indicates "new condition" Subscript 1 indicates "old condition"

Copyright 2023, Bell & Gossett, a Xylem brand

Diameter	Flow/ Volume	Head	Horsepower Required
100%	100%	100%	100%
90%	90%	81%	73%
80%	80%	64%	51%
70%	70%	49%	34%
60%	60%	36%	22%
50%	50%	25%	13%
40%	40%	16%	6%
30%	30%	9%	3%
20%	20%	4%	-
10%	10%	1%	-
0%	0%	0%	-

 These "Laws" <u>assume</u> pump efficiency remains constant

- Bearing Friction
- Mechanical Seal
- Fluid Friction
- System Fluid Recirculation
- Shock Losses (Axial & Radial)

Copyright 2023, Bell & Gossett, a Xylem brand

Smaller Impeller, Greater Internal Recirculation

Copyright 2023, Bell & Gossett, a Xylem brand

Impeller Trimming and the Affinity Laws

Bell & Gossett a xylem brand

Impeller Trimming and the Affinity Laws

- Impeller Trimmed 12.5%
- Efficiency reduced 2.7%
- Flow reduced 13.5%
- Head reduced 23.0%
- BHP reduced 31.5%

Copyright 2023, Bell & Gossett, a Xylem brand