

The Little Red Schoolhouse

Large Chilled Water System

Design Seminar

Courtesy of Oslin Nation Company

Distribution Piping Strategies

2-Pipe Parallel Circuits

System Pressure Gradient Diagram – Not Balanced 2-Pipe Direct Return

D

С

25'

a xylem brand

2-Pipe Parallel Circuits – **Direct Return** Flow Distribution

System Pressure Gradient Diagram – Balanced **2-Pipe Direct Return**

D

С

25'

25'

25'

45'

a xylem brand

REMINDER: System Head Loss for Closed Loop Pump Sizing

Parallel Loops

Total System Head Loss = B+C for <u>*Critical Circuit*</u> Copyright 2023, Bell & Gossett, a Xylem brand

Bell & Gossett a xylem brand

System Pressure Gradient Diagram – Balanced?? 2-Pipe Reverse Return

D

В

А

Parallel

50'

a xylem brand

25'

25

25'

45'

Primary-Secondary - It's all about "The Pressure Drop"

Converts a Large Complex System into Smaller Manageable Sub-Systems

- Converts a Large Complex System into Smaller Manageable Sub-Systems
- Hydraulically Isolates One System from the Other
- Can Provide Thermal Separation

Pressure Drop in Common Pipe – Valve 50% Closed

Pressure Drop in Common Pipe – Valve Removed

When Two Piping Circuits are Inter-Connected,

Flow in One Circuit <u>Will</u> Cause Flow in the Other,

To a Degree, Depending Upon the Pressure Drop in the Piping Common to Both.

When Two Piping Circuits are Inter-Connected,

Flow in One Circuit Will <u>Not</u> Cause Flow in the Other,

If the **Pressure Drop** in the Piping Common to Both is **Eliminated**.

- Three to Four Pipe Diameters Between Tees (Recommend no less than 12")
- Head Loss Less Than 1.5 Feet (Recommend size equal to Primary Supply)
- Keep Velocities Low in Secondary Piping (Recommend 2-4 FPS for air control and noise)

Primary-Secondary System

Primary-Secondary System

From Common Pipe

Common Pipe

Continuous Secondary Pump Circulation

Continuous Secondary Pump Circulation

Primary-Secondary Modulating 2-Way Valve Control Source Pump Variable Speed Control possible

Constant Secondary Flow ("On/Off" Pump Control) Constant Secondary Flow (Continuous Pump) Variable Secondary Flow (Continuous Pump)

모모 γļγ ASD Ъс

Constant Secondary Flow ("On/Off" Constant Speed) (Integrated Variable Speed)

Variable Secondary Flow (Variable Speed Pump)

From a Cross-Over Bridge

From a Cross-Over Bridge

Copyright 2023, Bell & Gossett, a Xylem brand

Bell & Gossett a xylem brand

Remember – It's the Law!

The Flow Rate (GPM) Entering a Tee.....

Must Equal the Flow Rate Leaving the Tee!

Primary-Secondary Flow Rates

_ to Secondary Flow

- No Flow in the Common Pipe
- Secondary Supply Temp = Primary Supply Temp
- Primary Return Temp = Secondary Return Temp

- "Reverse" Flow in the Common Pipe
- Primary Return Temp = Secondary Return Temp (Diverting Tee)

- "Forward" Flow in the Common Pipe
- Secondary Supply Temp = Primary Supply Temp (Diverting Tee)
- Primary Return Temp ≠ Secondary Return Temp (Mixing Tee)

Bell & Gossett a xylem brand

- "Forward" Flow in the Common Pipe
- No Secondary Flow
- Primary Return Temp = Primary Supply Temp

- A. What is required supply water temperature to secondary load?
- B. What is the design ΔT across secondary load?
- C. What is the primary supply water temperature?
- D. What is the total Btu/hr required for the secondary?
- E. What is the primary return temperature?
- **Example:** A secondary load of 300,000 Btu/hr requires 55°F supply water and is designed for a 15°F Δ T. The primary supply water from the chiller is 45°F.

What is the required cross-over bridge flowrate?

- A. What is required supply water temperature to secondary load?
- B. What is the design ΔT across secondary load?
- C. What is the primary supply water temperature?
- D. What is the total Btu/hr required for the secondary?
- E. What is the primary return temperature?
- **Example:** A secondary load of 300,000 Btu/hr requires 55°F supply water and is designed for a 15°F Δ T. The primary supply water from the chiller is 45°F.

What is the required cross-over bridge flowrate?

- A. What is required supply water temperature to secondary load?
- B. What is the design ΔT across secondary load?
- C. What is the primary supply water temperature?
- D. What is the total Btu/hr required for the secondary?
- E. What is the primary return temperature?
- **Example:** A secondary load of 300,000 Btu/hr requires 55°F supply water and is designed for a 15°F Δ T. The primary supply water from the chiller is 45°F.

What is the required cross-over bridge flowrate?

70°F - 45°F = 25°F Δ **T** across the bridge

- A. What is required supply water temperature to secondary load?
- B. What is the design ΔT across secondary load?
- C. What is the primary supply water temperature?
- D. What is the total Btu/hr required for the secondary?
- E. What is the primary return temperature?

Example: A secondary load of 300,000 Btu/hr requires 55°F supply water and is designed for a 15°F Δ T. The primary supply water from the chiller is 45°F.

What is the required cross-over bridge flowrate?

70°F - 45°F = 25°F Δ **T** across the bridge

a **xylem** brand

 $\frac{Btu/Hr}{500 \text{ x } \Delta T} = GPM$ Copyright 2023, Bell & Gossett, a Xylem brand $\frac{300,000}{500 \text{ x } 25} = 24 \text{ GPM bridge supply from main}$ Bell & Gossett

Typical Applications

- Large, diverse systems with high cumulative pressure drops
- Different Supply Water Temperatures in zones
- Stabilization of Boiler and Chiller flows required
- Freeze protection for Air Handling Coils

Typical Applications

- Large, diverse systems with high cumulative pressure drops
- Different Supply Water Temperatures in zones
- Stabilization of Boiler and Chiller flows required
- Freeze protection for Air Handling Coils

Benefits

- Design "large" primary loop temperature drops (Smaller pump and piping)
- Offers flexibility of Constant or Variable Speed Primary Pump operation
- Can reduce overall system pumping energy

