

The Little Red Schoolhouse

# Large Chilled Water System

# **Design Seminar**

Courtesy of Oslin Nation Company

**Chilled Water Production** 



## American Heating & Refrigeration Institute (AHRI)



#### American Heating & Refrigeration Institute (AHRI 550/590-2023) Water Chilling rating conditions:

- Entering/Leaving evaporator (chilled) water temperatures 54°F/44°F
- Chilled water flowrate 2.4 GPM/Ton (10°F  $\Delta$ T)
- Entering/Leaving condenser water temperature 85°F/94.3°F
- Condenser water flow rate 3.3/3.0 GPM/Ton (9°F-10°F  $\Delta$ T)



2

## "Vapor Compression" Chiller Types: Water or Air Cooled



#### • Air Cooled:

- o Chiller mounted outdoors, heat rejection using ambient air
- Can perform well in freezing temperatures and return to full capacity quicker
- Generally lower installation and maintenance costs

#### • Water Cooled:

- Chiller mounted indoors, heat rejection using water evaporation via Cooling Tower mounted outdoors
- o Larger capacities, greater energy efficiencies possible, longer equipment life expectancy
- Quieter operation

### General "Points of Knowledge" for Chillers

- Allowable Water Velocity:
  - o 3 Ft/Sec minimum tube velocity to prevent fouling and air binding
  - **12 Ft/Sec** maximum tube velocity to prevent erosion and vibration
- Required System Volume:
  - 3 gal/ton (Min.), 5-8 gal/ton (Preferred) [HVAC]
  - 6 gal/ton (Min.), 7-11 gal/ton (Preferred) [Process]
- Operating Efficiencies:
  - Constant Speed chiller optimum efficiency around 70%-90% loading
  - Variable Speed chiller optimum efficiency around 40%-60% loading



## Key Terms and Definitions for Chillers

**Refrigeration Ton:** The amount of heat energy (Btu/Hr) that can be removed by a chiller, using the refrigeration cycle, to melt **1 Ton** (2,000 Lbs.) of ice in 24 hours



Evaporator (Chilled Water): (2,000 Lbs.)(144 Btu/Lb.) ÷ 24 hours = 12,000 Btu/Hr per Ton

Condenser (Cooling Tower Water): 12,000 Btu/Hr x 1.25\* = 15,000 Btu/Hr per Ton

\*NOTE: Compressor adds 25% due to Heat of Compression



Key Terms and Definitions for Chillers (cont'd)

- $Q = m C_p (t_s t_r)$ Btu/Hr = 500 x GPM x  $\Delta T$
- $\mathsf{GPM} = \mathsf{Btu}/\mathsf{Hr} \div 500 \text{ x } \Delta\mathsf{T}$

Evaporator (Chilled Water): GPM/Ton = 12,000 Btu/Hr ÷ (500 x  $\Delta$ T °F) = 24/ $\Delta$ T °F

Condenser (Cooling Tower Water): GPM/Ton = 15,000 Btu/Hr ÷ (500 x  $\Delta$ T °F) = 30/ $\Delta$ T °F

NOTE: If using fluid other than water, specific heat must be added to the equation



#### Example

A cooling load calculation determines a **600 Ton** chiller is required for a mixed-use building. The system fluid will be **water**, with a design chilled water supply temperature of **44**°F and a **15**°F  $\Delta$ T at all coils in the system. The condenser will receive **85**°F water from the cooling tower, with an expected leaving temperature of **95°F**. Determine the required chilled and condenser water flows for pump selections.

- **Step 1:** Evaporator: 600T x 12,000 Btu/Hr/Ton = 7,200,000 Btu/Hr Condenser: 600T x 15,000 Btu/Hr/Ton = 9,000,000 Btu/Hr
- **Step 2:** Evaporator: 7,200,000 Btu/Hr ÷ (500 x 15) = 960 GPM Condenser: 9,000,000 Btu/Hr ÷ (500 x 10) = 1,800 GPM



#### Example

A cooling load calculation determines a **600 Ton** chiller is required for a mixed-use building. The system fluid will be **water**, with a design chilled water supply temperature of **44**°F and a **15**°F  $\Delta$ T at all coils in the system. The condenser will receive **85**°F water from the cooling tower, with an expected leaving temperature of **95**°F. Determine the required chilled and condenser water flows for pump selections.

#### **Step 1:** Evaporator: GPM/Ton = 24/15°F = 1.6 GPM/Ton x 600 = 960 GPM Condenser: GPM/Ton = 30/10°F = 3.0 GPM/Ton x 600 = 1,800 GPM

What if we used 35% Propylene Glycol instead of water on Evaporator Side?



### **Example with 35% Propylene Glycol**

 $GPM = \frac{Btu/hr}{(500 \times \Delta T)(C_p)(SG)}$ 

Density of Water @ 44°F = 62.42 Lbs/ft<sup>3</sup>

Density of 35% PG @ 44°F = 64.90 Lbs/ft<sup>3</sup>

SG = 
$$\frac{\rho \text{ of Fluid}}{\rho \text{ of Water}} = \frac{64.90}{62.42} = 1.04$$

**Cp** of 35% PG @ 44°F = **0.89** Btu/lb °F

500 x 15°F ∆T = **7,500** 







Water Cooled Chillers



#### Water Cooled Chiller





#### Basic Chilled Water System Piping: Water Cooled Chiller



#### Water Cooled Chiller: Sensible and Latent Heat Exchange

#### **Condenser**

- **Refrigerant** changes from Gas to Liquid by releasing *Latent Heat of Condensation*, refrigerant temperature remains constant.
- Cooling tower water gains Sensible Heat, changes temperature.

#### **Evaporator**

- **Refrigerant** changes from Liquid to Gas by absorbing *Latent Heat of Vaporization*, refrigerant temperature remains constant.
- Chilled water releases Sensible Heat, changes temperature.







#### Heat Pumps



### Air to Water Heat Pump Basic Operation









Images Courtesy of Caleffi Idronics, Daikin, and Trane

### Water Source Heat Pump Basic Operation













Images Courtesy of United Air Cool, Trane, and Daikin

#### Geothermal Heat Pump Systems – Ground Loop Options









#### Open Cooling Towers & Closed-Circuit Fluid Coolers



## Cooling Technology Institute (CTI)



Cooling Technology Institute (CTI STD 202) Cooling Tower rating conditions:

- Entering water temperature 95°F
- Leaving water temperature 85°F (7°F Approach)
- Outdoor Wet Bulb temperature 78°F
- Entering water flow rate 3.0 GPM/Ton (rejects15,000 Btuh)
- Range at 100% Load 10°F



#### Key Terms & Definitions for Cooling Tower Sizing

**Tower Approach:** The difference between the leaving cold water temperature and the Wet Bulb temperature. **5°F - 7°F** allows practical cooling tower sizing

Tower Range: The temperature difference between the hot water inlet and cold water outlet

Heat Load: Total heat to be removed from the water by the cooling tower per unit time (Btu/hr)

Wet Bulb Temperature: The lowest temperature air can be cooled by evaporating water into the air at constant pressure.



## **Open Cooling Tower Design Options**







Induced Draft Cross-Flow Induced Draft Counter-Flow Forced Draft Counter-Flow

Bell & Gossett

a xylem brand

- Constant and Variable water flow models available.
  - $\circ~$  Induced Draft Fan located at top, drawing air through louvers and fill
  - $\circ~$  Forced Draft Fan located at bottom, pushing air through louvers and fill



## **Basic Operating Principles for Open Cooling Towers**

- Rejects heat to surrounding outdoor air through process of evaporation.
  (970 Btu to evaporate 1 Lb. of water)
- Capacity (*Tons of Cooling*) dependent on air Relative Humidity (*Wet Bulb Temperature*)
- Very Humid Air or Cold Air holds less moisture

#### **Summary**

- Flowrate and Heat Load determine "Range"
- As Outdoor Wet Bulb decreases, colder supply water possible
- 42°F-45°F is lowest suggested cold water setpoint to prevent freezing
- Evaporation rate slows with colder air, tower heat load capacity is reduced



Bell & Gossett

a **xylem** brand

#### Key Terms & Definitions for Cooling Tower Water Management

**Cycles of Concentration:** The ratio of solids concentration in the cooling tower system water as compared to the makeup water

**Blowdown:** The water discharged to remove system water with high mineral content (solids)

**Drift:** The concentration of water droplets contained in the exhaust air from top of cooling tower. On average, will be **.0005%** of system flow rate.

**Make-Up:** The water supply needed to replace system water losses due to evaporation, drift, and blowdown



### **Open Cooling Tower: System & Basin Filtration Options**







Side Stream Filtration

LAKOS SYSTEM

Basin Cleaning Filtration

Bell & Gossett

a xylem brand

• Full Flow: Filtering 100% of system flow

**Full Flow** 

Filtration

- Side Stream Flow: Filtering a percentage of system flow (Typically 10%-25%)
- Basin Cleaning: Filtering 10%-20% of system flow, Sweeper Piping in basin

Images Courtesy of Lakos

#### **Open Cooling Tower: System Full Flow Sediment Separation**



Bell & Gossett a xylem brand

#### **Closed-Circuit Fluid Coolers**



- Heat transferred from process fluid to ambient air through heat exchange coil
  - o Isolates process fluid from outside air, keeping it clean and contaminate free
  - $\circ$  Can use process fluids other than water for freeze protection
- Integral spray pump distributes water across heat exchange coil
  - Absorbs heat from process fluid inside coil
  - $\circ~$  Releases heat to atmosphere as portion of water evaporates



Images Courtesy of Evapco, and Tower Tech Inc.

## **Closed Circuit Fluid Cooler Application Considerations**

#### **Suggested when:**

- Winter load too low for Open Tower to prevent freezing (*Glycol can be used*)
- Overall water consumption and equipment maintenance reductions are required
- System fluid cannot be exposed to atmosphere (i.e. Water Source Heat Pumps)
- Good chemical treatment program not available

## **Closed Circuit Fluid Cooler Application Considerations**

#### **Suggested when:**

- Winter load too low for Open Tower to prevent freezing (Glycol can be used)
- Overall water consumption and equipment maintenance reductions are required
- System fluid cannot be exposed to atmosphere (i.e. Water Source Heat Pumps)
- Good chemical treatment program not available

#### Concessions:

- Often require larger installed footprint that Open Tower
- First cost typically higher
- Higher system pump head maybe required due to large pressure drop in coil
- Requires additional "Spray" pump to circulate water from basin to nozzles



## Questions?

## Comments?

## **Observations?**

